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ABSTRACT
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1. Introduction. Waveform relaxation, also called dynamic iteration or Picard-

Linderl6f iteration [7], is a technique for solving ordinary differential systems of initial-
value type [5] (8]. Its key idea is to solve an ordinary differential system in n variables

by solving sequence of subsystems in fewer variables. This nature of the method allows

independent integration with different timesteps for each of subsystems. Thus the

method is usually considered in the context of parallel or multirate algorithms [2].

The convergence of the wavwform relaxation methods has been analyzed by Miekkala
and Nevanlinna [7]. They discussed this issue over infinite time interval and showed

that, for linear heat equation with standard spatial discretization, the convergence rates

of the waveform iterations are similar to those for the analogous steady-state problems.

Therefore the convergence could be too slow for the waveform relaxation to be compet-

itive with standard timestepping methods.
Multigrid techniques (in space) can be incorporated to accelerate the convergence.

This was studied by Lubich and Ostermann [6] who compared the multigrid performance
of wavcfomni iteration :vitlt Lilat of static iteration (i.e., the iteration for steady-state

problems) for one-dimensional heat equation. Combining the analysis on the smoothing
rate of high frequencies, they conjectured the waveform multigrid performanc for two-

dimensional case. They showed that the typical multigrid acceleration can be achieved

with an estimated convergence rate, which is similar but not quite as good as the one

for the steady-state problems.

A number of parallel waveform multigrid algorithms have been proposed and im-

plemented [9] [11]. Analytical and experimental results have shown that the waveform

multigrid methods can be implemented on a parallel computer with satisfactory effi-

ciencies.
In this paper we study the relationship between the waveform multigrid method for

time-dependent PDEs and the standard multigrid for the corresponding steady-state

problems. This study is important since the steady-state multigrid has been investi-

gated extensively while the properties of waveform multigrid algorithm are relatively
unknown. We present a Fourier-Laplace analysis for obtaining practical convergence

rate estimates of waveform multigrid iterations. The approachs used in this paper are

simple, applicable to wide class of applications, and provide insight into the details of
the basic interaction between the coarse grid correction and the waveform relaxation.

This paper is organized as follows. Section 2 briefly introduces the waveform re-

laxation method. In Section 3, the waveform relaxation and multigrid iteration are

combined. A theorem is proved which indicates that the convergence rates of waveform
multigrid are essentially the same as those for the analogous steady-state problems when

number of smoothings is large. Section 4 gives the details of Fourier-Laplace analysis,
which is used for obtaining exact convergence rates. As an example, analytical com-

parison of multigrid convergence rates in practical number of smoothings is made for a

two-dimensional heat equation. Finally, the comparison to the measured convergence
rates is presented in Section 5.

2. Waveform relaxation method. Waveform relaxation m-thod was originally
proposed f'U siiiig ,rdhilary differential equations consisting of subproblems with few



external variables in circuit simulation [5]. Unlike standard time stepping methods,
it iteratively partitions a large system into loosely coupled subsystems and integrates
each subsystem independently. Hence, it is well suited for parallel machines, especially
massive parallel machines.

The method can be described as follows. Consider a linear initial value problem

du

Let A be split as A = M - N. Under certain conditions, Eq.(I) can be solved iteratively
by

du( v)

(2) d---) + Mu() = Nu("- 1 ) + f, t > 0, u(0)(0) = U0,

which is equivalent to the integral equation

(3) u(v) = Su(v-1 ) + O,

where S is a linear integral operator on LP(R+, C07) (1 < p < oc) with kernel k,(t) = C-'N
and 0 is a function depending upon f and M.

The general convergence results of the scheme (2) over entire interval t > 0 were
given by [7]. In their work, the Laplace traiisformation was applied to the time variable
t and it showed that the convergence rate for scheme (2) was given by the spectra!
radius of S, derived as

(4) p(S) = max p(S(z)), ,S(z) : Laplace transform of S.Rez>_O

We shall follow their approach and concentrate on the damped Jacobi relaxation and the
red-black Gauss-Seidel relaxation for linear equatiotis with time-independent coefficients
of the form

(5) d-- + Lu=f t >0, u(O) = uo,

where L is a linear elliptic operator. Let Lh be a discrete approximation of L and
assume it can be written as

(6) Lh = d['R 4
Then the damped Jacobi relaxation and the red-black Gauss-Seidel relaxation have the
Laplace transform

(7) Sj~ (H+Mj)'Nj - d 2 [ (± -1)1 +( - ])1

d
Mj=-I, Nij= MJ - Lh, 0<W< 1;
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(8) Srcs(z) I (+ MGS) _NGS d i)[ ~)z +d 0 RB

Al0  I d[R I NsMsL 1

In the following sections, the subscripts of the matrices will be dropped when the context
is clear.

3. Waveform versus steady-state multigrid method. The convergence of the
waveform relaxation method can be accelerated if the multigrid technique is incorpo-
rated in space. In this section, we shall show that, the convergence rate of waveform
multigrid iteration converges to that of steady-state multigrid iteration as the number
of smoothings increases. In next section, a Fourier-Laplace analysis will be introduced
to show that the performance of the waveform multigrid iteration for time-dependent
PDEs is virtually as good as the standard multigrid iteration for the corresponding
steady-state problems for practical number of smoothings.

The multigrid method is adapted to the waveform iteration for a time-dependent
PDE in the following way. First, the equation is discretized in space to give a semi-
discrete problem. Next, the multigrid iteration with waveform relaxation is applied
to the space variables. As an example, a two grid V-cycle for Eq.(5) is illustrated as
follows:

"* Perform v, pre-smoothings:

du(v)d---- + Mu(-) = Nu(v-1) + f t > 0, u(V)(0) =U,

where Lh = M- N, v = 1,2,... ,v1, u(O) = u(°)(t) is given.
"* Restrict the defect from grid h to grid H:

du(vI)
(9) dh .- di + Lhu(vO) - f, dH := IHdh"

"* On the coarse grid, solve

dvd- + LHv = dH, v(O) = O.
dt

"* Correct

=(v,) _ ly

v',,ere IH is a suitable interpolation from grid H to grid h.
"* Perform v2 post--''oOthing• Al T.
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Similar to the Full-Approximation-Scheme (FAS) formulation of multigrid, one can
formulate a coarse grid problem as

dull d ( iH u~h, Hu.
d--- + LHUH = -I-l'dh + + ) + LHIu~vl.

UH(0) = IHUo

and the correction step as

U v() + Iy(uH -- IHU(v()
U h + ~H h ihh

in order to handle non-linear problems. This however should be used in an FMG
algorithm where the problems is solved first on coarse levels to obtain a good initial
approximation to fine ones.

The error e() u(= ) - u of a complete two grid V-cycle iteration described above
satisfies

(10) e =)

for an integral operator V, which has the Laplace transform (see [6])

(11) V(z) =S(z)v2 (l - l(z + LH)-'I/H(z + Lh))S(z)t", Rez > 0.

where S(z) is the Laplace transform of tiue smoother being used. In order to indicate
the dependency of V and V(z) on the number of smoothings v = v, + v2, we use the
notation V(v) and V(z, v) whenever it is necessary.

Assuming that all the entries of V(z) are rational functions of z vanishing at infin-
ity with poles having negative real part, and taking V as an operator on LP(R+,C"C•)

(1 < p < oc), the spectral radius p(V) = limk... jIVkflh/k satisfies ([6])

(12) p(V) = max p(V(z)).
Rez>O

Note that S(O) and V(O) are respectively, the smoothing and multigrid two-grid cycle
operators for the corresponding steady-state problem (or static problem) Lhu =- f.

Theorem 1. The spectral radius for the waveform two-grid Vl-cyclc opfrator
V = V(v) for equation (5) satisfies

(13) ,in Ip(V(v)) - p(V(O,,,))l = 0

for either dauiped Jacobi or red-black Gauss-Seidel smoothings.
Proof. We shall prove the case of the red-black Gauss-Seidel relaxation only. The

proof for the damped Jacobi relaxation follows similarly. Let CG(z) denote the Laplace
transform of coarse grid correction operator,

(14) CG(z) =I I h(Z + LH)-'I'(z + Li,)

= CG(O) + C((;(z)
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with

(15) CGA(z) = zIh(z + L)-'(L4' I"' Lh - lH).

Since the spectral radius

p(S'2(z)CG(z)S"V(z)) = p(CG(z)SV(z)), v = VI + v2, for all z,

for simplicity, we rewrite the two-grid operator (11) as

(16) V(z,v) = CG(z).'"(z)
= CG(O)Sv(z) + CGA(z)Sv(z).

As noted in Section 2, the red-black Gauss-Seidel smoother (8)

SV(z) = +d)2
v [ 0 ( )CV , C = RB,

(17)0

-- -(" ") "°) (d-)2v [o BC"1-]

Let 2 z/d, we have

1
V(z,v) + 1)2- V(O, v) + A(-;, v)

with

(18) A(2,v) =F(v)(-)3,(;,v),

F(v)(2) + 1)2v'

0 0 I ( + B -LH (Lj••1 L,- I) 0 (1 + C')B('-'

1 0" 0" L 1 1

Given > 0, there is a matrix norm i1 jn , such that (see [4], pp.297)

1
p(V(z, v)) !5 + 1)2vV(0 V) lI + IIA(-•, )lII

and

1 1II(± + )2 ,,V(OV)I, < P((, + 1),v)(o,,))+ .

Therefore

1
p(V(v)) < omax + llj p(V(O, v)) + + mn ax Z, c)
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which leads to

(19) 0 < p(V(v)) - p(V(0, v)) • + max IIA(.,v)11.-- Reý>_O

The matrix function ( v) is analytic in Re, > 0, continuous on ReZ = 0, and
A(oc,v) is bounded for all v > I (because Sv(O) -- 0 as v -- 0 oc [7]), so does its f-norm
II(, v)ll, thus

(20) max j1A(5, v)j1, < c(c),Re•.>O

where c(c) is a function of c independent of 5 and v. Combining Eq.(18) and Eq.(20),
we hlave

max IA(•,v)II, < max IF(v)(2)I c(,) - F°')(+i v ) c(o)
Rci.>_O - Re2>O 12 77

SIF(')(0)I • c(c) = 0, as v - o0. 0

4. Fourier-Laplace analysis. Fourier analysis has been used to provide exact
convergence rate of multigrid iteration for some steady-state problems [1]. In order to
analyze the convergence rate of waveform multigrid iteration, first, the Laplace trans-
form is introduced in time variable to convert a rn-dimensional semi-discrete linear
differential equation with time-independent coefficients

(21) ut + Lhu = f

u(0) = 0

to equivalent algebraic equations defined over the right half complex plane

(22) (z + Lh)i(z) = f(z), Rez > 0.

Then multigrid method applied in space only is analyzed by considering its action on
each of these equations. This is done using Fourier analysis for each equation in (22),
and combining the results to obtain the convergence rate of waveform multigrid iteration
for Eq.(21). In this section a Fourier-Laplace analysis is applied to the waveform two
grid V-cycle iteration described in Section 3.

Let us begin with the error formula (10)

C(i)- = e(i-1)

Its Laplace transform is

(23) •(i)(z) = V(z),(-'')(z), Rez > 0.
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Let

0 = (01, 2.... ,•2 ), 9j = 0'(mod 7r), j = 2, .27',

and X(O), V'(0, z) denote the Fourier modes on grid h and the symbol of V(z), i.e.,

X(O) = [exp(i9'x/h),. , exp(i92'%/h)]

V(o,-Z) = [V,k(O, Z)12.2-m

satisfying

(24) V(z)X(0) = X(0)f/(0,z) for all 0.

Then

(25) p(V(z)) = sup p((O,z)) = max p(V(O,z)).o 0!<.10'1!5 __

The symbol matrix V/(0, z) is of order 2"', a tiny matrix comparing to V(z). Its spectral

radius can be calculated accurately for each given 0 and z. Therefore p(V), the conver-
gence rate of the waveform two grid iteration, is obtained by computing p(V!(O, z) over
0 10'1 _< • and Rez = 0:

p(V) = iax max p(V(O,z)).Rez=O 0:5o 10I<!

Example. Consider the heat equation on a square Q = (0, 7r) x (0, 7r) with Dirichlet
boundary conditions

ut-Au =f, (t,x) E (0, oo) X Q

u= g, (t,x) E [0,oo) X 41, u(0, x) = Uo(X), x E.

Let Lh correspond to the five point Laplacian

(26) 
Lh := h-2 1 4 - I

The Laplace transform of the two grid iteration operator V is given by (see Eq.(16))

(27) V(z) = CG(z)S'(z)

with

CG(z) = I - Ih,(z + LH)-' I//(z + Lh)
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and the corresponding smoother S(z). Since the space spanned by the Fourier mode

X(O) is invariant under each of operators in Eq.(27), we have

(28) V(O, z) = (I - In(O)(z + LH(20))-' -14(0)(z + Lh(O)))S"(O, z), Rez > 0.

where -. 's indicate the matrix '-vmbols and H = 2h is assumed. For this particular

example, the fine grid operator is represented as

Lh(o')
Lh(O)=".

L1, (04)

with

4(sin2 (O,/2) + sin2 (02!2))
0 = (01, 02), Wh(O)= h2

the coarse grid operator as

LH(20) = [LH(201 )].

The bi-linear interpolation is chosen for Ih and the restriction operator i = ()T.

Their matrix symbols are

=- HI ^H(4~ fH (1 + cos0 1 1 + cos9O2
h•'(o) = 1[4 (19 h(...,• o ],) = 2 2

io= (o(H))T.

Smoothers for the damped Jacobi and the red-black Gauss-Seidel relaxation are repre-

sented as (see Eq.(7)-(8))

F S(O',.z)1
Sij (0, --)=

S,(0,
4 1)

4
zwOd(d-,wL,(O)), d=--, 0< <l;

SG' s(0,Z)= [) S1(O'z) 0"o(o,-)

go(Oz)=• :+,• -(,+ ,)1 0 '56 ,z)-:+ )

a 1a -(] +a) - ) b I + b -(I +b) 1
2- -b -(I - b)

-~ I 8



TABLE 1

Damped Jacobi Waveform Multhgrid (w = 2/3)

V_ 1 2 3 4 5 6 7 8 9 10
p(V(t)) .6626 .4190 .2909 .1927 .1486 .1269 .1124 .1004 .0908 .0838

p(V'(0, t)) .6626 .4390 .2909 .1927 .1332 .1152 .1003 .0881 .0793 .0728

TABLE 2
Red-Black Gauss-Seidel Waveform Multigrid

v 1 2 3 4 5 6 7 8 9 101
p(V(v)) .2439 .1567 .1132 .0861 .0737 .0614 .0548 .0473 .'130 .0390 !

p(V(0, v)) .2439 .1517 1046 .0765 ,0669 .0543 .0474 .0404 .0368 .0336

SOIIa- 2(1 + +z) Tb- 21+ ±z/d) c

Tables 1 and 2 prcsent computed p(V(v)), the spectral radius of waveform multi-
grid operator, and p(V(0,v)) of corresp nding steady-state multigrid operator for the
damped Jacobi and the red-black Gauss-Seidel relaxation. As it shows, the estimated
convergence rates of waveform multigrid iteration are virtually as good as thosr for
steady-state problems. Since extensive research has been done in multigrid methods
for steady-state problems [1] [3] [10], this analytic comparison is very useful in pre-
dicting the performance of waveform multigrid methods. Although our discussion was
done only for the model heat equation, one may expect t e same performance of the
waveform multigrid iteration as that of si oady-state one in wide ciasses of applications.
The treatment of general problems, e.g., non-coustawt coefficients or general domains, is
done in a similar way using frozen coefficients argument which is applicable for smooth
coefficient problems. Its theoretical rigorous justification is involved and needs the use
of pseudo-difference calculus.

5. Comparison and Conclusion. We have shown that the estimated conver
gence rate of waveform multigrid iteration is almost undistinquishable from that of
steady-state one. Now, we compare the experimental results of the convergence rate to
the analytic ones discussed in last section.

Consider the two-dimensional heat equation on Q = (0. 7r) x (0., 7r)

U - Iu= f, (t, x) E (0, tf] x×Q,

u(t,x) = 0, (t,.r) E [0, tf] x d,

u(Ox) = uo(x). .E ,

where u0 was generated randomly to excite all possibli Fourier modes. The space
derivatives were discretized by central differences with uniform fine grid size h,. For
time integration, as in [7], trapezoidal rule was used. The step size was aiways chosen

9



TABLE 3
Damped Jacobi Waveform Multigrid

v analytic p(V(v)) measured p(V(v))
worst case avareage case

1 .6626 .6657 .6403
2 .4390 .4401 .4160
3 .2909 2964 .2693
4 .1927 .1890 1836

TABLE 4
Red-Black Gauss-Seidel Waveform Multigrad

v analytic p(V(v)) measured p(V(v)) 41,mo(2v - 1) + O(h )

worst case avareage case
1 .2439 .2560 .2282 .2500+0(h6 )
2 .1567 .1137 .0740 .1625+O(h4)
3 .1132 .0761 .0524 .1295+O(h2)
4 .0861 .0670 .0437 .1110+O(h2)

as ht= .01 on (0, tf]. Note, the efficiency of time integration is not tile concern of this
paper.

The experiments were run for two-grid V-cycle with v damped Jacobi (w = 2/3)
or red-black Gauss-Seidel relaxations. The fine grid mesh size in space was h1 = 7r/n,

n = 8, 16, 32, 64. Although the spectral radius p(V(v)) was studied on entire time
interval t E [0, o), finite interval [0, tf] had to be used in experiments. For each set
of tests, we used both tf = 1 and tf = 10. However, we found that the measured
convergence rates did not depend on the size of time interval.

To measure the spectral radius p(V(v)), we used the asymptotic ratio of the defects
(see Eq.(9))

mnaxt Ild +'52112inaxi 11 d(' 11,2"

Using the matrix split of Lh, the calculation of the derivatives in the defects can be
avoided. Pecause of extensive computations involved, Ild(' 112 was evaluated only at
t = tf since the convergence of the waveform iteration is determined by the error at
t = tf.

Tables 3 and 4 present the comparison results. They show that the analytic con-
vergence rates obtained via Fourier-Laplace analysis almost coincide with the real ones,
a result evidenced for the steady-state problems [1]. As a reference, Table 4 also lists
values of !i-/ro(2v- 1), the bounds of p(V(v)) proved for one-dimensional problem by
Lubich and Ostermann [6]. They conjectured the bounds for that of two-dimensional

heat equation as 1/r/o(2v - 1) + 0(h'). Observing our analysis in Section 4, with
standard discretization of L, nine-point restriction and bi-linear interpolation, p(V(v))
is independent of the grid size h,. The major difference of our approach to tihe one
in [6] is that, instead of using eigenvectors of Lh, we used Fourier modes, which are

10



much easier to manipulate, extendible to high-dimensional problems and wide class of
applications. Most important of all, this approach is able to give the exact convergence
rates for special model problems and sharp estimates for general problems.
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